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f : is the original image.

e: is the additive noise.

f̂ = f + e: is the noisy image.

The objective of the image denoising problem is to

estimate the original image f from the noisy one f̂ .
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Types of Noise that we typically encounter:

1 Gaussian noise: p(z) = 1√
2πσ

e−(z−µ)2/(2σ2)

2 Impulse Noise: p(z) = Pa, if z = a, p(z) = Pb, if z = b,

p(z) = 0 otherwise.
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some information about the type and/or the statistics of the

noise (e.g., the parameter σ in the case of gaussian noise).

We aim at a noise independent methodology.

The idea is to express f as a span of some base functions

fi .

We choose the base functions fi to belong to a RKHS.
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Consider a linear class H of real valued functions f defined on

a set X (in particular H is a Hilbert space) for which there exists

a function κ : X × X → R with the following two properties:

1 For every x ∈ X , κ(x , ·) belongs to H.

2 κ has the so called reproducing property, i.e.,

f (x) = 〈f , κ(x , ·)〉H, for all f ∈ H, x ∈ X , (1)

in particular κ(x , y) = 〈κ(x , ·), κ(y , ·)〉H .
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1 Map the finite dimensionality input data from the input

space X into a higher dimensionality (possibly infinite)

RKHS H.
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The original nonlinear task is transformed into a linear one,

which can be solved by employing an easier algebra.

The main concepts of this procedure can be summarized
in the following two steps:

1 Map the finite dimensionality input data from the input

space X into a higher dimensionality (possibly infinite)

RKHS H.
2 Perform a linear processing on the mapped data in H.
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The Kernel Trick

An alternative way of describing this process is through the

popular kernel trick.

"Given an algorithm which is formulated in terms of an

inner product, one can construct an alternative algorithm

by replacing the inner product with a positive kernel κ".
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)
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Inhomogeneous Polynomial Kernel
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Some Kernels used in practice

Polynomial Kernel κ(x , y) = 〈x , y〉d

Gaussian Kernel κ(x , y) = exp
(

−‖x−y‖2

2σ2

)

, σ > 0

Inhomogeneous Polynomial Kernel

κ(x , y) = (〈x , y〉 + c)d

Bn-Spline of odd order Kernel κ(x , y) = B2r+1(‖x − y‖),
with Bn =

⊗n
i=1 I[− 1

2
, 1

2 ]
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The Representer Theorem

Theorem

Denote by Ω : [0,∞) → R a strictly monotonic increasing

function, by X a set and by c : (X × R
2)m → R ∪ {∞} an

arbitrary loss function. Then each minimizer f ∈ H of the

regularized risk functional

c ((x1, y1, f (x1)), . . . , (xN , yN , f (xN)) + Ω (‖f‖H)

admits a representation of the form

f (x) =

N
∑

n=1

αnκ(xn, x).
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Example of the Representer Theorem

Consider the problems

minimize
f∈H

N
∑

n=1

|f (xi)− yi |
2 + λ‖f‖2

H

minimize
f∈H

N
∑

n=1

|f (xi)− yi |+ λ‖f‖2
H

In both cases the minimizer admits the form:

f (x) =
N
∑

n=1

αnκ(xn, x).
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The semi-parametric Representer Theorem

Theorem

Suppose that in addition to the assumptions of the previous

theorem we are given a set of M real-valued functions

{ψp}
M
p=1 : X → R, with the property that the N × M matrix

(ψp(xn))n,p has rank M. Then any f := f̃ + h, with f̃ ∈ H and

h ∈ span{ψp}, minimizing the regularized risk functional

c ((x1, y1, f (x1)), . . . , (xN , yN , f (xN)) + Ω
(

‖f̃‖H
)

admits a representation of the form

f (x) =
N
∑

n=1

αnκ(xn, x) +
M
∑

p=1

βpψp(x).
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smooth.
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specific RKHS.

P. Bouboulis, K. Slavakis, S. Theodoridis Kernelised Denoising 20 / 39



Image Denoising

Reproducing Kernel Hilbert Spaces

Kernelised Noise Removal

Conclusions

Definition of RKHS

Why RKHS?

Representer Theorem

The semi-parametric Representer Theorem

Typically a RKHS consists of functions that are very

smooth.

Evidently, one cannot effectively approximate a

non-smooth function f as a span of base functions of a

specific RKHS.

The semi-parametric Representer Theorem, may be used

to impose non-smoothness through the functions ψp.
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Rectangular area neighborhood

We are given a noisy image with dimensions N0 × M0
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Rectangular area neighborhood

We are given a noisy image with dimensions N0 × M0

We move from one pixel to the next taking (for each pixel)

a corresponding neighborhood (i.e. a rectangular area).
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Choosing functions to represent edges

Let f̂ be the given "noisy" neighborhood of one pixel with

dimensions N × M, i.e. the ẑm,n = f̂ (xm, yn) for

m = 1, . . . ,M, n = 1, . . . ,N, are the given pixel values of

the noisy neighborhood.
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dimensions N × M, i.e. the ẑm,n = f̂ (xm, yn) for

m = 1, . . . ,M, n = 1, . . . ,N, are the given pixel values of

the noisy neighborhood.

We assume a set of real valued functions ψk , k = 1, . . . ,K

defined on R
2 that satisfy the condition of the

semiparametric Representer Theorem.
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The expansion

Next, we assume for the denoised image f that

f ∈ F = H + h0I + span{ψ1, . . . , ψK }

(where I ∈ R stands for the constant function i.e.

I(x , y) = 1).
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The expansion

Next, we assume for the denoised image f that

f ∈ F = H + h0I + span{ψ1, . . . , ψK }

(where I ∈ R stands for the constant function i.e.

I(x , y) = 1).

Hence f admits the form

f = f̃ + h0I +

K
∑

k=1

βkψk .

P. Bouboulis, K. Slavakis, S. Theodoridis Kernelised Denoising 26 / 39



Image Denoising

Reproducing Kernel Hilbert Spaces

Kernelised Noise Removal

Conclusions

Basic Idea

Formulation

Parameter Selection

Experiments

Optimization

We solve the following minimization problem for each pixel

(using Polyak’s Projected Subgradient Method):

minimize
f∈F

M
∑

m=1

N
∑

n=1

|f (xm, yn)− ẑm,n| +
λ

2
‖f̃‖2

H +
µ

2

K
∑

k=1

|βk |
2,

where f̃ is the part of the expansion of f that lives on H.
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Semiparametric Representer Theorem

Applying a version of the semiparametric Representer Theorem

we take that f admits the form

f =
M
∑

m=1

N
∑

n=1

αm,nκ ((xm, yn), (·, ·)) + h0I +
K
∑

k=1

βkψk .
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Remarks

minimize
f∈F

M
∑

m=1

N
∑

n=1

|f (xm, yn)− ẑm,n| +
λ

2
‖f̃‖2

H +
µ

2

K
∑

k=1

|βk |
2,
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Remarks

minimize
f∈F

M
∑

m=1

N
∑

n=1

|f (xm, yn)− ẑm,n| +
λ

2
‖f̃‖2

H +
µ

2

K
∑

k=1

|βk |
2,

Note that the use of l2 instead of the l1 norm in the cost

function would make the method sensitive to outliers (e.g.,

impulses).
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Note that the use of l2 instead of the l1 norm in the cost

function would make the method sensitive to outliers (e.g.,

impulses).

Furthermore, the l1 norm adds some sort of sparsity to the

expansion.
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Remarks

minimize
f∈F

M
∑

m=1

N
∑

n=1

|f (xm, yn)− ẑm,n| +
λ

2
‖f̃‖2

H +
µ

2

K
∑

k=1

|βk |
2,

Note that the use of l2 instead of the l1 norm in the cost

function would make the method sensitive to outliers (e.g.,

impulses).

Furthermore, the l1 norm adds some sort of sparsity to the

expansion.

For even more sparse solutions, one may also adopt the l1
norm for the regularization terms.
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Remarks

In the case of the Gaussian Kernel:

‖f̃‖H =

∫

X

∑

n

σ2n

n!2n
(On f̃ (x))2dx ,

with O2n = ∆n and O2n+1 = ∇∆n, ∆ being the Laplacian and

∇ the gradient operator.

Thus, we see that the regularization term ‖f̃‖2
H "penalizes" the

derivatives of the minimizer’s part that lives on H.
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Selection of the parameters λ, µ

We keep λ constant.
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Selection of the parameters λ, µ

We keep λ constant.

The value of µ is adjusted so that:

if we are dealing with a pixel-neighborhood that

corresponds to a smooth area, µ is large,

if we are dealing with a pixel-neighborhood that
corresponds to an edge, µ is small,

For "steeper" edges, the value of µ is smaller.
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Gaussian Noise Removal

(a) (b)

(c) (d)

Figure: (a) Original Image, (b) Original with additive Gaussian Noise -

PSNR=18,7146 dB, (c) Wavelet Denoising (BiShrink) -

PSNR=29,3536 dB, (d) Kernelised Denoising - PSNR=29,4535 dB
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Impulse Noise Removal

(a) (b)

(c) (d)

Figure: (a) Original Image, (b) Original with additive Impulse Noise -

PSNR=12,7562 dB, (c) Wavelet Denoising - PSNR=25,2574 dB, (d)

Kernelised Denoising - PSNR=30,1146 dB
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Mixed Noise Removal

(a) (b)

Figure: (a) Image with additive mixed Noise (Gaussian + Impulse) -
PSNR=21 dB, (b) Kernelised Denoising - PSNR=32,28 dB
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Conclusions

Advantages

Extended experiments were conducted using a plethora of

cutting edge methods (SKR, BM3D, BiShrink, BLS-GSM, e.t.c.).

Advantages of the kernel based methodology:

Independence of the noise statistics.

Superior results in the presence of impulse or mixed noise.

In the presence of gaussian noise, the kernel based

method gives results similar to wavelet-based techniques

that require no additional information for the noise statistics

(such as BiShrink).
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Disadvantages

Disadvantages:

Increased computational complexity.

In the presence of gaussian noise, the cutting edge

wavelet-based methods (such as BM3D, BLS-GSM), which

require some sort of knowledge of the standard deviation

σ, give superior results.
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Future Research

Kernel Based processing in the Wavelet Domain.

Applying the kernel-based approach in the context of

super-resolution.
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